

Product Description SALSA® MLPA® Probemix P160-C1 STS

To be used with the MLPA General Protocol.

Version C1. For complete product history see page 7.

Catalogue numbers:

- P160-025R: SALSA MLPA Probemix P160 STS, 25 reactions.
- P160-050R: SALSA MLPA Probemix P160 STS, 50 reactions.
- P160-100R: SALSA MLPA Probemix P160 STS, 100 reactions.

To be used in combination with a SALSA MLPA reagent kit and Coffalyser.Net data analysis software. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman/SCIEX capillary sequencers, respectively (see www.mlpa.com).

Certificate of Analysis: Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mlpa.com.

Precautions and warnings: For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com. It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product.

General information: The SALSA MLPA Probemix P160 STS is a **research use only (RUO)** assay for the detection of deletions or duplications in the *STS* gene, which is associated with X-linked ichthyosis. This probemix can also be used to detect *STS* deletions or duplications that extend into the neighbouring *ANOS1* (*KAL1*) and *NLGN4X* genes.

X-linked ichthyosis is a skin disorder characterised by dark brown and black, polygonal scales particularly found on the trunk, neck and extremities, which are caused by a deficiency of the steroid sulfatase (STS) enzyme. Placental steroid sulfatase deficiency occurs in pregnant mothers of affected males and is associated with low oestrogen production, failed induction of and prolonged labour. In up to 90% of patients, X-linked ichthyosis is caused by complete deletion of the *STS* gene located on chromosome Xp22.31 (Hernández-Martín et al. 1999), but partial *STS* gene deletions and point mutations have also been described.

Larger deletions at Xp22.31 might include neighbouring genes such as *ANOS1* or *NLGN4X*. Loss of the *ANOS1* gene causes 5-10% of Kallmann syndrome, which is characterised by impaired sense of smell (anosmia/hyposmia) and delayed or absent puberty due to hypogonadotropic hypogonadism. Copy number variations and mutations in the *NLGN4X* gene have been associated with X-linked mental retardation and autism.

This SALSA MLPA Probemix is not CE/FDA registered for use in diagnostic procedures. Purchase of this product includes a limited license for research purposes.

Gene structure and transcript variants:

Entrez Gene shows transcript variants of each gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene For NM_ mRNA reference sequences: http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide Locus Reference Genomic (LRG) database: http://www.lrg-sequence.org/

Exon numbering: The *STS, ANOS1* and *NLGN4X* exon numbering used in this P160-C1 STS product description is the exon numbering from the RefSeq records NG_021472.2, NG_007088.2 and NG_008881.2, respectively. For flanking probes located in the genes *PUDP* and *GPR143*, the RefSeq records NG_021256.1 and NG_009074.1 were used for exon numbering. The exon numbering has been retrieved on 02/2020. As changes to the NCBI database can occur after release of this product description, exon numbering may not be up-to-date.

Probemix content: The SALSA MLPA Probemix P160-C1 STS contains 35 MLPA probes with amplification products between 130 and 427 nucleotides (nt). This includes 13 probes for the *STS* gene, one probe for each exon with the exception of exon 3, as well as two flanking probes targeting the *PUDP* gene. Furthermore, three probes for the *ANOS1* gene and one flanking probe for the *GPR143* gene, as well as five probes for the *NLGN4X* gene are included. In addition, 11 reference probes are included that detect locations on the X-chromosome. Complete probe sequences and the identity of the genes detected by the reference probes are available online (www.mlpa.com).

This probemix contains nine quality control fragments generating amplification products between 64 and 105 nt: four DNA Quantity fragments (Q-fragments), two DNA Denaturation fragments (D-fragments), one Benchmark fragment, and one chromosome X and one chromosome Y-specific fragment (see table below). More information on how to interpret observations on these control fragments can be found in the MLPA General Protocol and online at www.mlpa.com.

Length (nt)	Name	
64-70-76-82	Q-fragments (only visible with <100 ng sample DNA)	
88-96	D-fragments (low signal of 88 nt and 96 nt fragment indicates incomplete denaturation)	
92	Benchmark fragment	
100	X-fragment (X chromosome specific)	
105	Y-fragment (Y chromosome specific)	

MLPA technique: The principles of the MLPA technique (Schouten et al. 2002) are described in the MLPA General Protocol (www.mlpa.com).

MLPA technique validation: Internal validation of the MLPA technique using 16 DNA samples from healthy individuals of the same sex is required, in particular when using MLPA for the first time, or when changing the sample handling procedure, DNA extraction method or instruments used. This validation experiment should result in a standard deviation ≤0.10 for all probes over the experiment.

Required specimens: Extracted DNA, free from impurities known to affect MLPA reactions. For more information please refer to the section on DNA sample treatment found in the MLPA General Protocol.

Reference samples: A sufficient number (≥3) of reference samples should be included in each MLPA experiment for data normalisation. All samples tested, including reference DNA samples, should be derived from the same tissue type, handled using the same procedure, and prepared using the same DNA extraction method when possible. Reference samples should be derived from unrelated individuals who are from families without a history of X-linked ichthyosis or other Xp22-related disorders. It is recommended to use samples of the same sex to facilitate interpretation. More information regarding the selection and use of reference samples can be found in the MLPA General Protocol.

Positive control DNA samples: MRC-Holland cannot provide positive DNA samples. Inclusion of a positive sample in each experiment is recommended. Coriell Institute (https://catalog.coriell.org) and Leibniz Institute DSMZ (https://www.dsmz.de/home.html) have a diverse collection of biological resources which may be used as a positive control DNA sample in your MLPA experiments. The quality of cell lines can change; therefore samples should be validated before use.

Data analysis: Coffalyser.Net software should be used for data analysis in combination with the appropriate lot-specific MLPA Coffalyser sheet. For both, the latest version should be used. Coffalyser.Net software is freely downloadable at www.mlpa.com. Use of other non-proprietary software may lead to inconclusive or false results. For more details on MLPA quality control and data analysis, including normalisation, see the Coffalyser.Net Reference Manual.

Interpretation of results: The standard deviation of each individual probe over all the reference samples should be ≤ 0.10 and the dosage quotient (DQ) of each individual reference probe in the patient samples

should be between 0.80 and 1.20. When these criteria are fulfilled, the following cut-off values for the DQ of the probes can be used to interpret MLPA results:

Copy number status: Male samples	Dosage quotient
Normal	0.80 < DQ < 1.20
Deletion	DQ = 0
Duplication	1.65 < DQ < 2.25
Ambiguous copy number	All other values

Copy number status: Female samples	Dosage quotient
Normal	0.80 < DQ < 1.20
Homozygous deletion	DQ = 0
Heterozygous deletion	0.40 < DQ < 0.65
Heterozygous duplication	1.30 < DQ < 1.65
Heterozygous triplication/Homozygous duplication	1.75 < DQ < 2.15
Ambiguous copy number	All other values

- Arranging probes according to chromosomal location facilitates interpretation of the results and may reveal more subtle changes such as those observed in mosaic cases. Analysis of parental samples may be necessary for correct interpretation of complex results.
- False positive results: Please note that abnormalities detected by a single probe (or multiple consecutive probes) still have a considerable chance of being a false positive result. Incomplete DNA denaturation (e.g. due to salt contamination) can lead to a decreased probe signal, in particular for probes located in or near a GC-rich region. The use of an additional purification step or an alternative DNA extraction method may resolve such cases. Additionally, contamination of DNA samples with cDNA or PCR amplicons of individual exons can lead to an increased probe signal (Varga et al. 2012). Analysis of an independently collected secondary DNA sample can exclude these kinds of contamination artefacts.
- Normal copy number variation in healthy individuals is described in the database of genomic variants: http://dgv.tcag.ca/dgv/app/home. Users should always consult the latest update of the database and scientific literature when interpreting their findings.
- Not all abnormalities detected by MLPA are pathogenic. In some genes, intragenic deletions are known that result in very mild or no disease (as described for *DMD* by Schwartz et al. 2007). For many genes, more than one transcript variant exists. Copy number changes of exons that are not present in all transcript variants may not have clinical significance. Duplications that include the first or last exon of a gene (e.g. exons 1-3) might not result in inactivation of that gene copy.
- Copy number changes detected by reference probes or flanking probes are unlikely to have any relation to the condition tested for.
- When running MLPA products, the capillary electrophoresis protocol may need optimization. False results can be obtained if one or more peaks are off-scale. For example, a duplication of one or more exons can be obscured when peaks are off-scale, resulting in a false negative result. The risk on off-scale peaks is higher when probemixes are used that contain a relatively low number of probes. Coffalyser.Net software warns for off-scale peaks while other software does not. If one or more peaks are off-scale, rerun the PCR products using either: lower injection voltage / injection time settings, or a reduced amount of sample by diluting PCR products.

Limitations of the procedure:

- In most populations, the major cause of genetic defects in the *ANOS1* and *NLGN4X* genes are small (point) mutations, most of which will not be detected by using SALSA MLPA Probemix P160 STS.
- MLPA cannot detect any changes that lie outside the target sequence of the probes and will not detect copy number neutral inversions or translocations. Even when MLPA did not detect any aberrations, the possibility remains that biological changes in that gene or chromosomal region *do* exist but remain undetected.
- Sequence changes (e.g. SNPs, point mutations, small indels) in the target sequence detected by a probe can cause false positive results. Mutations/SNPs (even when >20 nt from the probe ligation site) can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA.

Confirmation of results: Copy number changes detected by only a single probe always require confirmation by another method. An apparent deletion detected by a single probe can be due to e.g. a mutation/polymorphism that prevents ligation or destabilises the binding of probe oligonucleotides to the DNA sample. Sequence analysis can establish whether mutations or polymorphisms are present in the probe target sequence. The finding of a heterozygous mutation or polymorphism indicates that two different alleles of the sequence are present in the sample DNA and that a false positive MLPA result was obtained.

Copy number changes detected by more than one consecutive probe should be confirmed by another independent technique such as long range PCR, qPCR, array CGH or Southern blotting, whenever possible. Deletions/duplications of more than 50 kb in length can often be confirmed by FISH.

LOVD mutation database: https://databases.lovd.nl/shared/genes/. We strongly encourage users to deposit positive results in the Leiden Open Variation Database (LOVD). Recommendations for the nomenclature to describe deletions/duplications of one or more exons can be found on http://varnomen.hgvs.org/.

Please report copy number changes detected by the reference probes, false positive results due to SNPs and unusual results (e.g., a duplication of *STS* exons 4 and 6 but not exon 5) to MRC-Holland: info@mlpa.com.

Table 1. SALSA MLPA Probemix P160-C1 STS

Longth (nt)	SALSA MLPA probe	Chromosomal position (hg18) ^a			
Length (nt)		Reference	STS	ANOS1	NLGN4X
64-105	Control fragments – see table in pro	bemix content se	ction for more info	ormation	
130	Reference probe 13497-L13693	Xq12			
136	STS probe 05184-L04565		Exon 1		
142	NLGN4X probe 05589-L04580				Exon 3
148	ANOS1 probe 04431-L03817			Exon 14	
15 4	Reference probe 01355-L01615	Xp21			
160	STS probe 21041-L29265		Exon 1		
166	ANOS1 probe 04423-L05579			Exon 7	
172	Reference probe 06797-L06389	Xq27			
178	STS probe 05185-L04566		Exon 2		
183	NLGN4X probe 05197-L04578				Intron 1
190	STS probe 21006-L05112		Exon 10		
196	Reference probe 10757-L11353	Xq28			
201	STS probe 05190-L04571		Exon 7		
209	ANOS1 probe 04425-L05940			Exon 9	
220 ¬	GPR143 probe 02975-L02406			Upstream	
226	STS probe 21042-L29266		Exon 7	-	
238 ¬ «	PUDP robe 05194-L04575		Upstream		
247	STS probe 21043-L29267		Exon 6		
263	STS probe 05586-L05589		Exon 10		
283	NLGN4X probe 05587-L29518				Intron 1
301	Reference probe 01279-L00963	Xq22			
310	STS probe 05191-L04572		Exon 8		
319	NLGN4X probe 05202-L04583				Exon 6
326	STS probe 21045-L29269		Exon 6		
337	Reference probe 05121-L04511	Xq26			
346	STS probe 05187-L04568		Exon 4		
355	NLGN4X probe 05588-L04579				Exon 2
364	Reference probe 02641-L02108	Xp11			
373	Reference probe 06464-L05990	Xp22			
382	STS probe 05192-L04573		Exon 9		
391 ¬	PUDP probe 21046-L29270		Upstream		
399	Reference probe 07657-L07363	Xp11	-		
409	Reference probe 00820-L00338	Xq26			
418	STS probe 05188-L04569		Exon 5		
427	Reference probe 12797-L13935	Xq21			

a) See above section on exon numbering for more information.

 $[\]neg$ Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.

[«] Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.

Table 2. Xp22 probes arranged according to chromosomal location

Length (nt)	SALSA MLPA probe	Gene/ Exon ^a	Ligation site	Partial sequence ^b (24 nt adjacent to ligation site)	Distance to next probe
		NLGN4X	NM 181332.3		
		stop codon	3081-3083 (Exon 6)		
319	05202-L04583	Éxon 6	3218-3219	CTGACTTAAGAC-AAAAATGCAAAA	136.7 kb
142	05589-L04580	Exon 3	1136-1137	AAGAAGCCCGTC-ATGGTCTATATC	122.1 kb
355	05588-L04579	Exon 2	637-638	TTGAACCATGTC-ACGGCCCCAGGG	75.5 kb
183 #	05197-L04578	Intron 1	1561 nt after exon 1	AGAGAGAGAGTG-AACTTCAGTCCT	0.8 kb
283 ໑	05587-L29518	Intron 1	754 nt after exon 1	GACGGCTTGGGT-GATGCACGAAAT	822.4 kb
		start codon	633-635 (Exon 2)		
	T	·			
391 ¬	21046-L29270	PUDP Exon 4		GATGGAAACTCC-AATCTCAGGAGG	97.9 kb
238 ¬ ≪	05194-L04575	PUDP Exon 1		AGGCGGCGGCTG-CACACTACCCAC	71.5 kb
		STS	NM 000351.7		
		start codon	236-238 (Exon 2)		
160	21041-L29265	Exon 1	98-97 reverse	TATTCCCATGAG-AAACCTCTGCTT	0.1 kb
136	05184-L04565	Exon 1	190-191	CATCACAGCTCA-GTTCCCCAACAA	33.6 kb
178	05185-L04566	Exon 2	286-285 reverse	CTTGATGCTGCG-TGGCTCTCGGCT	4.3 kb
	No probe	Exon 3			
346	05187-L04568	Exon 4	522-523	CCGCACTGGAGT-TTTCCTCTTCAC	2.1 kb
418	05188-L04569	Exon 5	851-852	GGCTACTCCACG-TGCCTCTAGGCG	16.3 kb
326	21045-L29269	Exon 6	78 nt before exon 6 reverse	CATTCTGATTAA-GATCCACCTATT	0.2 kb
247	21043-L29267	Exon 6	6 nt after exon 6 reverse	CACTGAGGAGAA-ACGTACCCACAC	28.9 kb
226	21042-L29266	Exon 7	96 nt before exon 7	AACGTTTACTTC-CACCTTGAGAAA	0.2 kb
201	05190-L04571	Exon 7	1264-1265	GCACATGTAGAA-GAAGTGTCTTCC	20.3 kb
310	05191-L04572	Exon 8	1428-1429	CAACATGGACAT-ATTTCCTACAGT	8.6 kb
382	05192-L04573	Exon 9	1527-1528	AAAAAGCCAACG-CTCCGATCATGA	17.4 kb
190	21006-L05112	Exon 10	3109-3110	CATGATTTTGTT-TTCATCCCATTT	0.4 kb
263	05586-L05589	Exon 10	3507-3508	TGAAAGTTGGCT-ATAATTTCTCTA	1177.9 kb
		stop codon	1970-1972 (Exon 10)		
		ANOS1	NM 000216.4		
		stop codon	2142-2144 (Exon 14)		
148	04431-L03817	Exon 14	5418-5419	ATGATCTTTACT-GAATTTGCCCTT	24.3 kb
209	04425-L05940	Exon 9	1385-1386	CCCACTCGCCCG-CTGGAAGTCGGA	16.5 kb
166	04423-L05579	Exon 7	1105-1104 reverse	TACTGCTGACCA-TCCAGCTCCAAA	1155.2 kb
100	0 11 23-L033/3	start codon	102-104 (Exon 1)	TACTGCTGACCA-TCCAGCTCCAAA	1133.2 KD
	1			I	-L
220 ¬	02975-L02406	<i>GPR143</i> Exon 9		CTGCAACAAAAA-TGAGGGTGACCC	

- **a)** See above section on exon numbering for more information.
- **b)** Only partial probe sequences are shown. Complete probe sequences are available at www.mlpa.com. Please notify us of any mistakes: info@mlpa.com.
- \neg Flanking probe. Included to help determine the extent of a deletion/duplication. Copy number alterations of only the flanking or reference probes are unlikely to be related to the condition tested.
- « Probe located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.
- ⊚ The target sequence of this probe is not present in NM_181332.3 (transcript variant 2), but can be found in NM_020742.3 (transcript variant 1; ligation site 61-62 in exon 1).
- # The target sequence of this probe is not present in NM_181332.3 (transcript variant 2), but can be found in NM 001282146.1 (transcript variant 4; ligation site 224-225 in exon 1).

Related SALSA MLPA probemixes

■ P054 FOXL2-TWIST1 Contains probes for the *GPR143* gene.

■ P132 Kallmann-1 Contains probes for the *ANOS1* gene, which is associated with Kallmann

syndrome.

■ P133 Kallmann-2 Contains probes for the FGFR1, GNRHR, KISSR1, GNRH1, NELF, PROK2 and

PROKR2 genes, which are associated with Kallmann syndrome.

References

■ Hernández-Martín A et al. (2001). X-linked ichthyosis: an update. Br J Dermatol. 141:617-627.

- Schouten JP et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. *Nucleic Acids Res.* 30:e57.
- Schwartz M et al. (2007). Deletion of exon 16 of the dystrophin gene is not associated with disease. Hum Mutat. 28:205.
- Varga RE et al. (2012). MLPA-based evidence for sequence gain: pitfalls in confirmation and necessity for exclusion of false positives. *Anal Biochem.* 421:799-801.

Selected publications using SALSA MLPA Probemix P160 STS

- Diociaiuti A et al. (2018). X-linked ichthyosis: Clinical and molecular findings in 35 Italian patients. Exp Dermatol. 28:1156-1163.
- Diociaiuti A et al. (2019). Next generation sequencing uncovers a rare case of X-linked ichthyosis in an adopted girl homozygous for a novel nonsense mutation in the STS gene. Acta Derm Venereol. 99:828-830.
- Idkowiak J et al. (2016). Steroid sulfatase deficiency and androgen activation before and after puberty. *J Clin Endocrinol Metab.* 101:2543-53.
- Karampetsou E et al. (2014). Confined placental mosaicism: implications for fetal chromosomal analysis using microarray comparative genomic hybridization. *Prenat Diagn.* 34:98-101.
- Winge MCG et al. (2011). Filaggrin genotype determines functional and molecular alterations in skin of patients with atopic dermatitis and ichthyosis vulgaris. *PLoS One.* 6:e28254.
- Winge MCG et al. (2011). Novel point mutation in the STS gene in a patient with X-linked recessive ichthyosis. *J Dermatol Sci.* 63:62-64.

P160 Product history			
Version	Modification		
C1	Two STS probes have been added, and one flanking probe and the Y-fragment on 118 nt have been removed. Two STS probes, two flanking probes and one reference probe have been replaced. In addition, several probe lengths have been adjusted.		
B1	Y-fragment on 118 nt and five reference probes have been replaced, control fragments have been adjusted (QDX2).		
A2	One STS probe has a different length and two reference probes have been replaced. In addition, four extra control fragments have been included at 88-96-100-105 nt.		
A1	First release.		

Implemented changes in the product description

Version C1-01 — 20 March 2020 (02P)

- Product description rewritten and adapted to a new template.
- Ligation sites of the probes targeting the STS, ANOS1 and NLGN4X genes updated according to new version of the NM_ reference sequence.

Version 09 - 22 September 2016 (55)

- Product description adapted to a new product version (version number changed, lot number added, changes in Table 1 and Table 2, new pictures included).
- Information on the database of genomic variants added on page 2.
- Data analysis method modified.
- Updated gene names KAL1 to ANOS1 and HDHD1A to PUDP.
- Exon numbering of the *NLGN4X* gene has been changed on page 3 and 4.
- Salt warning added under Table 1 and Table 2.

- Various minor textual changes. Altered manufacturer's address.

More information: www.mlpa.com; www.mlpa.eu		
~	MRC-Holland bv; Willem Schoutenstraat 1 1057 DL, Amsterdam, The Netherlands	
E-mail	info@mlpa.com (information & technical questions); order@mlpa.com (orders)	
Phone	+31 888 657 200	